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Executive Summary 
Pain is a subjective experience that is 
reflected in both behavioral and physiologic 
responses. It is inherently difficult to 
objectively assess and/or quantify [1, 2], yet 
appropriate treatment and management of 
pain is predicated on adequate assessment. 
Whenever possible, the existence and 
intensity of pain are measured by the 
patient’s self-report [2, 3]. Patients who 
cannot reliably self-report their pain, due to 
underlying medical conditions or concurrent 
treatments, are at significantly higher risk for 
inadequately managed pain [1]. For example 
patients in the intensive care unit, older 
adults with dementia, patients with major 
cognitive or communicative impairments, 
infants, and patients under general 
anesthesia may not be able to reliably self-
report [1, 4-7]. For them, other strategies 
must be used to assess pain. Consistently, 
multi-dimensional approaches to pain assessment have proven superior to metrics focused on a 
single variable [1, 4]. No single clinical indicator is sufficient to assess pain. Therefore, it is 
critical to combine behavioral pain assessment with physiological monitoring, and to interpret 
behaviors in a patient specific context [2].  
 

There are several important benefits to our versatile and multimodal approach: 
1) Multimodal - machine learning algorithms include behavioral and physiologic indicators 
2) Versatility - the forehead or finger sensor can be removed due to patient specific issues 
3) Specificity - the contribution of pain indicators to the pain severity score can be adjusted for 

different populations (e.g., movement may be irrelevant for intentionally sedated patients)   
4) Fieldability - low-cost, lightweight system can easily be deployed in a field hospital or clinic  
5) Continuous - wearable low-power sensors enable long-term continuous monitoring 
 

During Phase I of this project, we designed and prototyped a Multimodal Objective Pain 
Assessment Sensor System (MoPASS, Figure 1). MoPASS is a wearable and low power 
system for rapid pain assessment and continuous long-term monitoring. The system will 
implement a multimodal pain assessment algorithm that will be developed using machine 
learning techniques based on the results of clinical studies conducted during Phase II (see 
Phase II Work Plan). To monitor these parameters, we designed and prototyped a system of 
two lightweight, comfortable, wireless, wearable sensors, worn on the forehead and finger, 
which relay real-time signals to the MoPASS software 
developed in Phase I.  

The prototype Forehead Sensor consists of a functional 
unit which records and transmits two lead EEG (Figure 2). 
During Phase I we identified NeuroSky (San Jose, CA) as 
our preferred vendor for EEG hardware component 

Figure 1: The Multimodal Objective Pain 
Assessment Sensor System (MoPASS) consists 
of two wireless wearable sensors that measure 
clinical correlates of pain and aggregate these 
measures into a single pain score. 
	
   

Figure 2: The EEG component of 
the Forehead Sensor (courtesy of 
NeuroSky, San Jose, CA)  
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because their chipsets provide access to algorithmically optimized data. These pass-band 
filtered signals will be used directly in our MoPASS algorithms. The prototype that we developed 
during Phase I is capable of streaming at 512 Hz in real-time via Bluetooth to a nearby 
computer running MoPASS software. Clinical studies in Phase II will examine these parameters 
in response to acute pain. 

 
The prototype Finger Sensor records and transmits tri-axial 
acceleration, temperature, and GSR (Figure 3). During 
Phase I, we identified Shimmer (Dublin, Ireland) as our 
preferred vendor for GSR because it is a validated device, 
it has Bluetooth capabilities, and we have had previous 
positive experiences with Shimmer sensors. This firmware 
uses a command response communication protocol to 
successfully communicate with the MoPASS software. The 
firmware we developed allows the MoPASS software to 
dynamically control and query sensor status, start and stop 
data streaming, and configure the sampling rate and gain. Signals are acquired at 100 Hz. 

The design specifications for the Finger Sensor were to measure tri-axial acceleration, skin 
conductance, heart-rate, and skin temperature. During development we decided to include 
blood oxygen saturation (i.e., pulse-ox) because optics was our preferred method of recording 
heart-rate and using this sensing modality pulse-ox was readily available without any cost or 
user comfort implications. We developed a prototype of the Finger Sensor by combining a 
wireless pulse oximeter with the previously discussed Shimmer GSR sensor (Figure 4). Signals 
are acquired at 100 Hz.   

The prototype of the Finger Sensor that we have developed extends to the wrist (Figure 4); 
however, in Phase II we will design and manufacture a custom sensor to make all relevant 
measurements directly from a single sensor on the finger.   

 
The off-the-shelf hardware used in Phase I does not have an acceptable form-factor for a 
commercialized device. In Phase II, we will design and manufacture a single forehead sensor 
that is capable of making all measurements (GSR, EEG, and acceleration). 

The MoPASS software that we developed during Phase I uses the Bluecove library, which 
implements the Java Bluetooth standard JS-82. Bluecove was developed by Intel and is now 
widely used in Java Bluetooth applications. It supports multiple Bluetooth communication 
protocols, including RFCOMM, which is used by the MoPASS devices. Using the MoPASS 
software we are able to query the status of each MoPASS sensor, control the sampling status in 
real time, parse incoming data streams, plot time-series data, and export data in Matlab or 

Figure 4: The prototype of the 
Finger Sensor that was developed 
during Phase I. During Phase II the 
components on the wrist will be 
eliminated and all measurements 
will be made by a single customized 
sensor worn on the finger. 

Figure 3: The movement, GSR, 
and temperature component of the 
Forehead Sensor (courtesy of 
Shimmer, Dublin, Ireland). 
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ASCII delimited text formats. We have also implemented an extensible sensor data parsing 
component in the MoPASS software. This allows a flexible architecture for incorporating or 
removing specific sensors in the future without changing the software architecture. 

 
Thus, the key outcomes of our Phase I work were:  

• System design including pain metrics and appropriate wearable sensing modalities 
• A functional beta-prototype consisting of two wearable sensors and software 
• Clinical trial design and selection of a clinical site for trials to be conducted in Phase II  
 

Figure 5: MoPASS software for wirelessly acquiring real-time signals from the Forehead 
and Finger Sensors. Algorithms developed based on these trials in Phase II will be used to 
modulate the pain intensity score shown at the bottom of the screen.  
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First Phase I Outcome: Identification of Pain Measures & MoPASS Sensing Modalities 
Consistently, multi-dimensional approaches to pain assessment have proven superior to metrics 
focused on a single variable [1, 4]. No single clinical indicator is sufficient to assess pain. 
Behaviors do not specifically reflect pain intensity; rather they indicate distress, which could be 
physiologic or emotional in nature [8]. Physiological parameters can change in response to 
many factors other than pain, and the absence of changes in these signals does not indicate the 
absence of pain [2]. 

Several tools have been developed to aggregate observational ratings of behavioral parameters 
and physiologic measures into one pain assessment score [1, 4, 9-11]. These tools are superior 
to unimodal methods [4] but are subjective in nature and require regular repeat assessment by 
care providers. Automated multimodal pain assessment has great potential for improving the 
quality of pain management care. Recently, Worley et al. demonstrated that a multimodal 
assessment tool could detect noxious heel lance and touch stimuli in infants with 100% 
sensitivity and specificity [12]. This assessment tool incorporated videography, EEG, EMG, and 
electrocardiograms (ECG), along with measures of total hemoglobin concentration, respiration 
rate, and oxygen saturation. This provided an important demonstration of the efficacy of 
objective multimodal pain assessment. However, the system developed by Worley et al. was not 
designed for continuous monitoring of clinical pain. In particular, analysis was performed offline 
and subjective analysis of videography was used to assess behavior.  

Based on interviews with experts in clinical pain management, discussions with project 
consultants from the Departments of Anesthesiology and Surgery at the University of Arizona, 
and emerging trends in the scientific literature, we identified two behavioral and four 
physiological parameters that are correlated with acute pain (Table 1). Therefore, it is critical to 
combine behavioral pain assessment with physiological monitoring, and to interpret behaviors in 
a patient specific context [2]. The behavioral and physiological variables that are monitored by 
our wearable sensor system are listed in Table 1 and discussed in detail in subsequent 
sections. 

Table 1: Pain indicators measured by MoPASS 
 Parameter Sensor Unit Sensor Modality 

Facial Expression (grimace, clenching) Forehead Electromyography 
Behavioral 

Movement (restlessness, guarding) Forehead and Finger Accelerometry 

Perspiration Forehead and Finger Skin Conductance 

Heart Rate Finger Optical  

Skin Temperature Forehead and Finger Thermocouple 
Physiological 

Pain related electrocortical activity  Forehead Electroencephalography 

Behavioral Indicators: 

The primary behavioral categories used to help identify pain are facial expression (such as 
grimacing, frowning, and wincing) and body movement (such as restlessness and guarding) [1, 
2, 4, 5, 13]. To quantify facial expression we use surface electromyography (EMG) in the 
forehead sensor node to record electrical potentials on the forehead and temples. Bandpass 
filtering and blind-source separation techniques can be used to isolate muscle activity (e.g., 
from the occipitofrontalis, zygomaticus, or temporalis) and then the activity time-course can be 
used to distinguish normal muscle activity (e.g., blinking or chewing) from facial tension (e.g., 
grimace, wincing, frowning). We have previously used similar techniques to separate neck 
muscle activity from electrocortical activity during human locomotion [14-17]. Restlessness can 
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be quantified with inertial sensors on the forehead and hand using algorithms that are modified 
from those we currently use to quantify physical activity and gait in our commercially available 
wearable inertial sensor systems (LEGSysTM and PAMSysTM). Our target patients are non-
communicative and often non-ambulatory; nevertheless, restlessness (i.e., persistent 
movements and adjustments in the bed or chair) are an important behavioral pain indicator.  

Physiological Indicators: 
Several physiological indicators have been used to assess of pain. Increases in heart rate, 
perspiration, and skin temperature (as well as increased variability in these parameters) may all 
be indicative of pain [18-21]. MoPASS measures heart-rate using optical sensors in the finger 
sensor unit, and perspiration on the finger and the forehead based on skin conductance. 
Finally, MoPASS measures skin temperature on both the forehead and finger using 
thermocouple based skin contact temperature sensors.   

Cortical Representation of Pain: 

Advances in neuroimaging are rapidly 
elucidating the cortical pain network, which 
includes structures in the sensorimotor, 
insular, anterior cingulate, and prefrontal 
cortex [22-27] (Figure 7). Many neuroimaging 
techniques have evaluated brain responses to 
controlled acute pain (see [25] for a review). 
The only noninvasive, wearable, and fieldable 
method for monitoring brain responses to pain 
is electroencephalography (EEG). EEG 
measures electrical potentials on the scalp 
generated by synchronous firing of cortical 
neurons. EEG signals that are time-locked to a 
short duration pain stimulus (i.e., event-related 
potentials) have been widely studied [28]. 
While informative, these techniques are not 
generally useful for assessment of clinical pain [25, 28]. A few studies have demonstrated that 
changes in continuous EEG spectral content correlate with self-reported pain scores [25, 29-31]. 
These studies hold great promise for clinical pain assessment. Most recently, Nir et al. 
demonstrated that increases in peak alpha frequency (8-12 Hz) on the bilateral temporal scalp 
during tonic noxious temperature exposure were correlated with self-reported pain score. When 
combined with other behavioral and physiological indicators of pain, continuous EEG monitoring 
may provide an invaluable tool for pain assessment in the non-communicative patient.  

MoPASS measures electrocortical activity using surface electrodes in the forehead sensor unit. 
Based on the location of these surface electrodes we are able to record electrocortical activity 
from the medial and dorsolateral prefrontal cortex, which are critical regions in the cortical pain 
network [22-27]. MoPASS software enables the collection and storage of raw EEG data as well 
as alpha-band (8-12 Hz) and beta-band (12-30 Hz) spectral power. Further, patient specific 
baseline values can be recorded and stored in MoPASS software for later comparison to 
spectral parameters during periods of acute pain. These fluctuations from baseline will serve as 
input to our multimodal pain assessment algorithm that will be developed based on the clinical 
trials conducted during Phase II. 

Figure 7: Schematic of 
the human cortical and 
subcortical pain 
processing network.  
From: Price, D.P. 
(2000) Science. 288, 
1769. 
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Second Phase I Outcome: Development of Functional Prototype of MoPASS 
The majority of our efforts during Phase I were related to the development of a functional 
prototype MoPASS system. The design objectives of this system, which included hardware and 
software, were to wirelessly record and display synchronized real-time data from the forehead 
and finger sensors, including EEG, skin temperature, movement (i.e., acceleration), heart rate, 
and skin conductance. The prototype system we developed in Phase I is fully functional and 
ready to be used immediately in clinical studies. Phase II engineering efforts will be devoted to 
form-factor optimization and design for manufacturing. During Phase II, off-the-shelf 
components used in Phase I will be replaced with custom manufactured hardware. To see video 
of the MoPASS system being used to record and display data in real-time visit 
www.biosensics.com/mopass/ and enter the password DHP12-015.       

The following Gantt chart was used during the six months of Phase I development. The 
remainder of this section will go into more detail about each stage of the development process.  

  
Stage 1: Development of Prototype Sensor Units 
 
Task 1: Identification of MoPASS Sensors 
A design matrix (Table 3) was used to identify the final sensors that would make up the 
MoPASS integrated system. 

 

Table 2: Gantt Chart of Phase I development stages 

Table 3: Design matrix used to finalize sensors used in MoPASS system 
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In selecting the final sensors, we were most interested in the quality of the data and how easily 
and comfortably the sensor could be worn. Other factors that influenced our selection were low 
cost, ease of integration with our existing capabilities and a sensor that was relatively small in 
size. A ‘Y’ denotes that the sensor met a specific criteria whereas an ‘N’ denotes that the sensor 
failed to meet the criteria.  
 

 We elected to use our own PAMSys for recording movement.  PAMSys was 
proven to work well as a product for body motion analysis as a platform for 
long-term physical activity monitoring. In addition, PAMSys is capable of 
taking external analog and digital signals from other sensors in MoPASS 
system (e.g. GSR and thermistor). Thus, choosing PAMSys makes 
integration of these sensor readings easy and reliable. Lastly, PAMSys is 
equipped with Zigbee and Bluetooth wireless capability, which makes it easy 
to offload data wirelessly to nearby base station (i.e. laptop running MoPASS 

GUI). 
 

 We elected to use Mind Band (NeuroSky, San Jose CA) for recording 
EEG. NeuroSky is the global leader in low-cost dry-electrode EEG 
technology. Their ThinkGear EEG module is used in more than 1 million 
consumer EEG devices. This level of broad adaptation gives us high 
confidence in their technology. Unlike many wireless EEG providers, 
NeuroSky offers a comprehensive SDK and access to both raw data and 
algorithmically optimized data. Specifically, the NeuroSky chipsets 
perform A/D conversion, signal amplification, off-head detection, EMG 
noise filtering, 50/60 Hz line noise filtering, and pass-band filtering (delta, 

theta, low/high alpha, low/high beta, and gamma). These pass-band filtered signals will be used 
directly in our MoPASS algorithms. Specifically, alpha- and beta-band signals from electrode 
locations above the medial and dorsolateral prefrontal cortex will serve as input to our 
multimodal pain assessment algorithms; these are critical regions in the cortical pain network. 
Finally, the patented NeuroSky eSense signal processing toolbox has great potential to assist in 
the development of our MoPASS algorithms. Specifically eSense has built in eye-blink detection 
and can quantify level of attention. Eye-blink detection will be used in the behavioral indicators 
portion of our multi-modal algorithm and level of attention may prove to be beneficial as a neuro-
cognitive indicator (clinical testing in Phase II will evaluate the efficacy of this approach). For all 
of these reasons NeuroSky was the obvious best supplier of EEG hardware for the MoPASS 
System. We have already discussed this project with development engineers at NeuroSky and 
have executed a Developer Agreement.    
 

We elected to use a Bluetooth Finger Pulse Oximeter for recording blood 
oxygen saturation and pulse. This pulse oximeter was chosen because it met 
all five of our selection criterion. The Bluetooth functionality makes it easy for 
us to integrate the sensor with our capabilities and control the quality of the 
data received. In comparison to the other sensors, we preferred this sensors’ 
size and method of attaching it to the user. Lastly, this was the cheapest 
sensor in comparison to the alternatives. For these reasons, this sensor will 
be used in the final integration of the MoPASS system.  

 
We elected to use Shimmer GSR sensor, a validated biomedical-oriented 
research application, for recording skin conductance. Shimmer GSR 
sensor interfaces with PAMSys through an existing daughter circuit board 
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designed and is manufactured to mate directly with PAMSys motion sensor board. This reduces 
engineering time for integrating GSR sensor reading into MoPASS integrated system. In 
addition, Shimmer GSR sensor has a pre-designed case that encloses the daughter card and 
the PAMSys sensor, which protects the circuit boards and provides good usability and 
wearability. Lastly, the Shimmer GSR sensor circuit is configurable. For example, it supports 
four digitally controlled measurement ranges which developers use to ensure accurate 
measurements and it allows gain selection to be hard-coded or manually selected. 
 
 

We elected to use a GE MA Series Thermistor for recording skin 
temperature. This thermistor was chosen because it met all five of 
our selection criterion. The main reason we chose this thermistor 
over the others is because it is a medical grade product meant to be 
worn and collect data. Thus, our wearbility and quality of data 
criterions were met. In addition, this thermistor’s compact size was 
more attractive than the alternatives. Lastly, the low cost and easy-
to-integrate capabilities ultimately led us to select this sensor for the 
final integration of the MoPASS system. 

 

Task 2: Sensor Hardware Development  

The aforementioned sensors were used in the hardware development of the wrist unit for the 
MoPASS system, as shown in Figure 8.  

 
The wrist unit is equipped with a 3-axis accelerometer for measuring hand movement, a 
thermistor for measuring skin temperature, a GSR sensor for measuring skin conductance, a 
pulse oximeter for measuring heart rate and blood oxygen saturation level (SpO2). The main 
data communication unit is BioSensics’ PAMSys device, designed for physical activity 

 
 

Figure 8: MoPASS Wrist Unit for real-time measurement and streaming of movement, skin 
conductance, skin temperature, heart rate, SpO2 readings over Bluetooth wireless connections to 
the monitoring station.  
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monitoring. In addition to 3-axis accelerometer, PAMSys is equipped with 2GB flash data 
storage, Zigbee and Bluetooth wireless data transceiver, USB docking capability for device 
charging and fast data off-loading/backup. Thermistor, GSR, and accelerometer sensor 
readings are acquired through the analog-to-digital-converter (ADC) ports on PAMSys’ main 
processor (a MSP430 micro-controller form Texas Instrument) with 12-bit resolution. The 
sampling rate is configurable through firmware settings and is currently set to be 100Hz. 

 

Stage 2: Hardware Design and Firmware Development 

Task 1: Design of MoPASS System Architecture  

We defined MoPASS system to be consisted of a MoPASS Desktop Application, the 
Forehead/Head Unit, and the Wrist Unit, as shown in Figure 9. The Forehead Unit records 3-
channel EEG, skin temperature, and head movements. The Wrist Unit measures heart rate, 
SpO2, skin temperature, skin conductance, and hand movements. Through Bluetooth, a 
MoPASS Desktop Application receives, parses, and analyzes the collected samples from 
Forehead Unit and Finger Unit. Using data from multiple wearable sensors, MoPASS derives a 
single score for automatic and rapid assessment of pain intensity and delivers the objective pain 
assessments to clinicians. We detail each component of the system in the following sections. 

Task 2: MoPASS Sensor Platform Development  

 
 

Figure 9: Overall architecture of MoPASS system. Forehead Unit and Finger Unit both 
contain multiple sensors, sample them, and communicate with preliminary MoPASS 

Desktop Application software in real-time over Bluetooth wireless links. 
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We developed wireless head 
sensor unit and wrist sensor 
unit that are used to measure 
movement, EEG, pulse, blood 
oxygen saturation (SpO2), skin 
temperature, and perspiration 
of subjects. The data collected 
by these sensors will be used 
to extract various pain 
parameters and to estimate the 
objective pain level. The tasks 
required for developing the the 
sensor units include 
development of a sensor 
firmware for data collection 
and wireless data 
communication. The sensors 
are required to be small and lightweight, capable of automatic wireless data transmission 
without any attention from the user. 

In order to provide real-time measurement of the required pain assessment parameters, the 
forehead sensor hardware includes EEG electrodes, analog electronic interfaces, a low power 
processor for signal processing, and a Bluetooth transceiver. The finger sensor unit includes a 
tri-axial accelerometer and an external fingertip sensor (connected through a removable 
daughter board) to measure 
pulse and SpO2.  For real-time 
processing and transmission of 
sampled signals, we include a 
2.4GHz Bluetooth transceiver 
with an embedded micro-
controller in the sensor. As 
shown in Figure 10, the sensor 
units include a Bluetooth 
transceiver with an embedded 
micro-controller for real-time 
data transmission and 
processing of sampled signals. 

For control and wireless 
communication capabilities, we 
have selected Bluetooth (IEEE 
802.15.1) to support real-time 
data transmission.   

Figure 11 shows the firmware 
architecture that will be used to operate the wrist sensor unit. We chose TinyOS to be the 
operating system for our firmware. TinyOS provides critical networking services such as media 
access control (MAC) protocol as well as wireless time synchronization (e.g. FTSP). The 
MoPASS sensor firmware application schedules sampling timing and stores the collected 
sample in a local buffer. The radio scheduler then sends the data from the buffer in the First-In-
First-Out (FIFO) order. In addition, the firmware architecture includes a fault tolerance layer to 
handle hardware malfunction (e.g. sensor failure or wireless transmission failure). This layer 

 
 

Figure 10: Hardware architecture of the MoPASS wrist unit. 

 
Figure 11: Overall firmware architecture of the wrist sensor. 
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reports unexpected behaviors to MoPASS Desktop Application so that users are notified about 
potential system failures and can take actions to reboot or replace malfunctioning sensor units. 

 

Task 3: Streaming Firmware 

We developed streaming firmware for PAMSys to collect real-time data from the wrist unit. The 
PAMSys has accelerometer sensors sampling at 40Hz, which can be configured to be up to 
1000Hz. The firmware reads accelerometer data through three ADC channels, and saves it into 
an internal buffer to be transferred to our desktop software.  

We have completed the development and integration of sensing and wireless data streaming 
features from PAMSys-based wrist unit, finger-worn pulse oximeter, and NeuroSky EEG 
MindBand. PAMSys firmware drives on measurements of 3-axis acceleration of the subject’s 
hand, skin temperature, and skin conductance. We have developed the firmware driver that 
samples the above sensors at up to 100Hz. The sampling rate will be made configurable from 
the MoPASS Desktop Application Software. PAMSys firmware also implements Bluetooth 
communication with the laptop computer running MoPASS Desktop Application Software. 

Bluetooth Finger Pulse Oximeter implements a Bluetooth communication protocol based on 
Radio Frequency Communication (RFCOMM). We were able to read the data stream from the 
sensor from any PC/Macs/Tablet computers with a Bluetooth transceiver. The Bluetooth Finger 
Pulse Oximeter sends optical measurements in a 7-byte message format at 100Hz. Also, the 
Bluetooth Finger Pulse Oximeter measures Pulse and SpO2 information and sends the collected 
data at 115200 bps to the on-board Bluetooth transceiver. In a single message, the pulse 
oximeter sends the subject’s SpO2, heart rate, and plethysmogram data (each sample of which 
is 6 bits), as well as sensor connectivity and status (each of which is 1 bit).  

NeuroSky EEG MindBand also transmits data through Bluetooth. MindBand measures and 
transmits EEG alpha, beta, gamma, theta, and delta waves, as well as connectivity and battery 
status. The NeuroSky EEG MindBand firmware samples data in 512Hz.  

For the wrist sensor unit to communicate with the MoPASS Desktop Application (MoPASS GUI), 
we designed and implemented a simple command-response communication protocol for 
MoPASS. The protocol is implemented both in the firmware of the wrist sensor unit as well as in 
the MoPASS GUI software. We describe the protocol in detail below. 

After powering up, the wrist sensor unit enters into idle mode and waits for incoming commands 
from the MoPASS GUI. The following commands are supported: 

- Status Inquiry (STATUS_INQ) 

- Current Sensor Reading (SAMP) 

- Start Streaming (START_STREAM) 

- Stop Streaming (STOP_STREAM) 

- Set Sampling Rate (SET_SAMPRATE) 

 

Status Inquiry (STATUS_INQ) command allows the MoPASS GUI to receive the following 
information from the wrist sensor unit: physical sensor status (i.e. report status of 
accelerometer, thermistor, and skin conductance sensor), battery level, sampling ranges, and 
sampling rate. The MoPASS GUI always transmits this command when the wrist sensor is first 
connected to the PC. Current Sensor Reading (SAMP) command will trigger sampling of one 
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data point from each sensor type from the wrist sensor unit and transmission of the measured 
values back to the PC to the MoPASS GUI over Bluetooth wireless connection. The Start 
Streaming command (START_STREAM) starts the continuous sampling and data streaming 
from the wrist sensor unit to the PC at the predefined sampling rate, set to 100Hz by default. 
The Stop Streaming command (STOP_STREAM) stops the data streaming and set the wrist 
sensor unit back to the idle mode. The Set Sampling Rate command (SET_SAMPRATE) 
configures the wrist sensor unit to sample at one of the following supported frequencies: 10Hz, 
50Hz, 100Hz, 125Hz, 200Hz, and 250Hz. The above commands allow the MoPASS GUI to 
dynamically control and query sensor status, start/stop data streaming, and configure sampling 
rate. 
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Stage 3: MoPASS PC Software 

Task 1: MoPASS Desktop Application Design and Development 

 

MoPASS Desktop Application will be able to perform multi-modal pain assessment based on the 
collected data from head and wrist sensor units. MoPASS desktop application shows a series of 
real-time sensor data, a pain indicator, as well as panels to manage data from multiple patients. 
Figure 12 illustrate the preliminary version MoPASS graphical user interface (MoPASS GUI). 
MoPASS GUI will provide features that allow clinicians to export raw data, export analyzed data, 
save and print the analyzed results.  MoPASS Desktop Application is developed in Java 
programming language and will be cross-platform. At this stage we plan is to support Microsoft 
Windows and MacOS platforms. MoPASS Desktop Application is designed to run on desktop 
and laptop computers. However, with minimal effort, we can extend its usage to mobile 
platforms, such as Android or Apple iPad tablet computers.  

 

Task 2: Mockup GUI 

 
Figure 12: Tentative Design of MoPASS Desktop Application. 
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This screenshot shows our development version of the Desktop GUI. As we mentioned in the 
previous section, our desktop software shows corresponding signals: EEG, Accelerometer, Skin 
temperature, Skin conductance, Pulse, Oxygen Rate. The desktop program is developed by the 
following MVC (Model-View-Controller) model in JavaFX, as JavaFX is known to be a well-
designed framework for MVC. Right under the menu bar, we show sensors and their 
connectivity. Users can click the button next to them to connect and disconnect. Once all 
sensors are connected, hitting on the ‘Start’ button initiates real-time data streaming and 
collection. Users can stop tests at any time by hitting on the ‘Stop Test’ button. All the collected 
data can be exported to a file (e.g., Comma Separated Value file). At the bottom, we show a 
pain level indicator by using a color bar: leftmost corresponding to the lowest pain level and 
rightmost, the highest. The ‘Analyze’ button next to the bar can give users pain level at any point 
in experiments.  

 

Task 3: Desktop Application Software Development  

To connect and stream data from the sensors, users first need to find their sensors. Our 
Desktop software provides an interface to find those sensors and save needed information. The 
following figures show screenshots of this feature.  

Figure 13: Development version of the Desktop MoPASS GUI. 
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As Figure 14 shows, by clicking on the “Find Sensors” button, users can find their sensors and 
by clicking on the “Save” button, they can save the discovered sensors’ information to a file. 
Therefore, users do not need to repeat finding sensors afterwards, unless they change their 
sensors.  

Although the listed devices use Bluetooth for communication, some vendors do not allow 
developers to access directly through Bluetooth. Rather, they allow developers to access data 
through RS-232 serial communication protocol. The protocol was originally developed for 
communicating with peripheral devices through serial cables. As the serial protocol is prevalent 
in popular operating systems, Bluetooth drivers in OS emulate the serial communication. 
Therefore, developers, after identifying which serial ports their devices operating on, can read 
and write data through the serial ports. For example, “COM0” stands for a serial port used to 
communicate with EEG Head Sensors. In summary, Wrist Sensors and EEG sensors work in 
serial protocol whereas Bluetooth Finger Pulse Oximeter works in direct Bluetooth 
communication.  

To connect Bluetooth Finger Pulse Oximeter, we use Bluecove as the underlying 
communication library, implementing Java Bluetooth standard JS-82 [13]. Originally developed 
by Intel Corporation, Bluecove is now widely used in Java Bluetooth application and supports 
multiple Bluetooth communication protocols, including RFCOMM (the one that our devices’ 
Bluetooth use).  

Figure 14: Screenshot showing how to find and connect sensors. 
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Moreover, the GUI displays connectivity information by using colors on a diagram. As shown in 
the figure, only the sensors connected to the GUI present its colors in green (Pulse Oximeter 
Finger sensor), whereas disconnected devices show their colors in red (top of the figure). Also, 
as presented in the figure, the sensors not connected to our desktop program do not visualize 
any data. We finished visualizing Pulse Oximeter Finger sensor and NeuroSky EEG MindBand.  

We developed the MoPASS GUI and have included the communication module that implements 
both a) the protocol described in Task 1 and b) the proprietary communication protocol 
supported by NeuroSky’s MindBand. After this module is completed, we were then able to query 
the status and to control the sampling status of both sensor units in real time using the MoPASS 
GUI. We also implemented an extensible sensor data parsing component in the MoPASS GUI. 
This allows a flexible architecture for incorporating or removing specific sensors in the future 
without changing the architecture of the MoPASS GUI software. Specifically, the MoPASS GUI 
can successfully start, receive, parse, and plot, as time series data, of the following sensor data 
in real time: 

- EEG (from MindBand) 

- Wrist Movement (3D acceleration) 

- Skin temperature 

- Skin Conductance 

Figure 15: Real-time plotting in development version of Desktop GUI 
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- Pulse 

- SpO2 

The collected data can be exported into Excel and MATLAB readable format for off-line 
analysis. Thus, we’ve successfully implemented real-time data streaming and data visualization 
for all the components that make up the MoPASS system. 

 

Stage 4: Validation of Prototype System 

We successfully validated the sensor data received from the wrist and head sensor unit of the 
MoPASS prototype. This validation involved the collection and analysis of real-time multi-modal 
sensor signals from the Bluetooth Finger Pulse Oximeter, the thermistor, the GSR sensor, the 
MindBand sensor and PAMSys. We were able to obtain correct pulse, SpO2, temperature, skin 
conductance, as well as hand movement data. Figure 16 shows all the sensor components of 
the MoPASS prototype.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 17 is a screenshot of the MoPASS Desktop Application for real-time measurement and 
streaming from both the wrist and head components of the MoPASS system. The top graph 
shows the real-time EEG measurements from the MindBand during a normal days-worth of 
activity. The remaining graphs depict measurements from the wrist unit. The second graph is 
specifically gathering real-time movement measurements. The third and fourth graph are 
depicting skin temperature and conductance, respectively. Lastly, the fourth graph is gathering 
real-time, accurate heart rate measures. We have successfully collected real-time signals for 
the wrist and head components, validating the MoPASS prototype system as a whole. In Phase 

Figure 16: MoPASS prototype system consisting of (A) the head unit and (B) the wrist unit. 
More specifically, the head unit comprises of the NeuroSky MindBand sensor and the wrist 
unit comprises of the PulseOx finger unit, the GSR electrode, the thermistor and the 
BioSensics PAMSys+ GSR sensing circuit.   
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II of this project, we will build on the MoPASS GUI as a foundation for running the algorithm for 
multi-modal pain detection and assessment. 
 

 

Figure 17: MoPASS Desktop Application for real-time measurement and streaming from both the 
wrist and head components of the MoPASS system. 
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Third Phase I Outcome: Clinical Study Design 
The third outcome of Phase I was the design of clinical studies to be carried out in Phase II and 
the identification of an appropriate clinical site and clinical investigators. These studies are 
described in detail in the Phase II work plan. In brief, we have identified an excellent clinical 
research team at the University of Arizona who will partner with us in these efforts, and we have 
identified a research plan involving long-term monitoring of patients in the medicine ICU. This is 
the ideal environment for the clinical studies for several reasons: 1) patients are often in the ICU 
for an extended period of time allowing us the opportunity to acquire clear baseline signals and 
then evaluate changes in response to painful procedures or medications, 2) patients in the 
medicine ICU often undergo painful procedures (e.g., central line, chest tube, spinal tap) and it 
is critical to monitor this pain, 3) many of these patient will be intubated, providing a portion of 
the sample population that is non-communicative, and 4) the first civilian commercialization 
target for MoPASS will be as a device intended for use in the ICU. 

Phase II Technical Objectives   

There are three objectives and associated deliverables of this Phase II project: 

1. Clinical Studies 

Objective: Conduct a clinical study using hardware developed during Phase I to collect 
MoPASS data and gold-standard clinical assessments of pain in the medicine ICU, and use 
this data to develop an algorithm to combine indicators of pain into a single pain score. 

Deliverables: There are three deliverables related to this objective: 1) the MoPASS pain 
intensity algorithm, 2) a filed U.S. Patent Application covering the specific approach to multi-
modal pain assessment that is discovered during these trials, and 3) a publication in a peer-
review scientific journal demonstrating the statistical significance of the correlation between 
the MoPASS pain intensity score and the gold-standard clinical assessments of pain. 

2. Sensor Improvements 

Objective: Improve the finger and forehead sensors by designing for manufacturability and 
improving the form-factor compared to the system developed in Phase I.  

Deliverables: A manufacturing plan including a complete bill-of-materials, vendor selection, 
cost-estimates, and tooling, as well as a first batch of 20 manufactured units. 

3. MoPASS Computer for Clinical Use 

Objective: Develop a Windows-based MoPASS software platform that runs on a ruggedized 
mobile personal computer and allows only the MoPASS software to run on the device.  

Deliverables: A ruggedized mobile computer that boots-up directly into the MoPASS 
software, pairs automatically with MoPASS sensors in range, continuously displays and logs 
a patients’ pain intensity score, and can be configured to optionally deliver an auditory alert 
and/or SMS format alert in the event that the pain score exceeds a clinician set threshold. 
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Conclusion 
Based on the significant work that we have completed during Phase I we are in an excellent 
position to meet these objectives. Specifically, we are ready to begin the clinical study at the 
outset of Phase II (following IRB approval). This will allow us to pursue Phase II engineering 
developments in parallel with Phase II clinical studies. By the completion of Phase II we will 
have a finalized device that is ready to be used in a comprehensive clinical trial during Phase III 
in anticipation of an eventual FDA submission for approval as a Class II Medical Device.    
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